Orthonormal Bases for Four Subspaces using Singular Value Decomposition
2019-10-23
The singular value decomposition (SVD) can be used to get orthonormal bases for each of the four subspaces: the column space $\newcommand{1}[1]{\unicode{x1D7D9}_{\{#1\}}}\newcommand{Corr}{\text{Corr}}\newcommand{E}{\text{E}}\newcommand{Cov}{\text{Cov}}\newcommand{Var}{\text{Var}}\newcommand{span}{\text{span}}\newcommand{bs}{\mathbf}\newcommand{R}{\mathbb{R}}\newcommand{rank}{\text{rank}}\newcommand{\norm}[1]{\left\lVert#1\right\rVert}\newcommand{diag}{\text{diag}}\newcommand{tr}{\text{tr}}\newcommand{braket}[1]{\left\langle#1\right\rangle}\newcommand{C}{\mathbb{C}}C(\bs{A})$
, the null space $N(\bs{A})$
, the row space $C(\bs{A}')$
, and the left null space $N(\bs{A}')$
.
In this post, we denote SVD of matrix $\bs{A}\in\R^{m\times n}$
as
$$ \bs{A} = \bs{U}\boldsymbol{\Sigma}\bs{V}' $$
where $\bs{U}\in\R^{m\times m}$
, $\boldsymbol{\Sigma}\in\R^{m\times n}$
and $\bs{V}\in\R^{n\times n}$
. $\bs{U}$
and $\bs{V}$
are orthonormal, namely $\bs{U}'\bs{U}=\bs{V}'\bs{V}=\bs{I}$
. $\boldsymbol{\Sigma}$
is diagonal (despite being rectangle), which means all entries $\sigma_{ij}$
are zero if $i\neq j$
. $\bs{V}'$
means transposition of $\bs{V}$
. Apart from this regular form, we have full-rank SVD as
$$ \bs{A} = \begin{bmatrix} \bs{U}_r & \hat{\bs{U}}_r \end{bmatrix}\begin{bmatrix} \boldsymbol{\Sigma}_r & \bs{O}\newline \bs{O} & \bs{O} \end{bmatrix}\begin{bmatrix} \bs{V}_r & \hat{\bs{V}}_r \end{bmatrix}’ = \bs{U}_r\boldsymbol{\Sigma}_r\bs{V}_r' $$
where $r=\rank(A)$
; $\bs{U}_r\in\R^{m\times r}$
is the block consisting of the first $r$
columns $\bs{U}$
, $\hat{\bs{U}}_r\in\R^{m\times (m-r)}$
is the complement of $\bs{U}_r$
from $\bs{U}$
; $\boldsymbol{\Sigma}_r\in\R^{r\times r}$
is the top-left square block of $\boldsymbol{\Sigma}$
; $\bs{V}_r\in\R^{n\times r}$
is the block consisting of the first $r$
columns $\bs{V}$
, $\hat{\bs{V}}_r\in\R^{n\times(n-r)}$
is the complement of $\bs{V}_r$
from $\bs{U}$
. Note that orthonormality still holds for $\bs{U}_r$
and $\bs{V}_r$
, and that now $\boldsymbol{\Sigma}_r$
is square and invertible.
Columns Space $C(\bs{A})$
Claim: $\bs{U}_r$
forms a basis of $C(\bs{A})$
. We prove it as follows.
Proof. All we need is to show that $C(\bs{A})=C(\bs{U}_r)$
. Left to right: assume $\bs{a}\in C(\bs{A})$
, then we know $\exists \bs{x}$
s.t.
$$ \bs{a}=\bs{Ax}=\bs{U}_r\boldsymbol{\Sigma}_r\bs{V}_r’\bs{x}:= \bs{U}_r\bs{x}^* \in C(\bs{U}_r). $$
Right to left: assume $\bs{u}\in C(\bs{U}_r)$
, then similarly $\exists \bs{x}$
s.t.
$$ \bs{u} = \bs{U}_r\bs{x} = \bs{A}\bs{V}_r\boldsymbol{\Sigma}_r^{-1}\bs{x} := \bs{A}\bs{x}^* \in C(\bs{A}). $$
Therefore, we conclude that $C(\bs{A})=C(\bs{U}_r)$
.Q.E.D.
Row Space $C(\bs{A}')$
Claim: $\bs{V}_r$
gives a basis of $C(\bs{A}')$
.
Proof. Similar to the column space, here we need to prove $C(\bs{A}')=C(\bs{V}_r)$
. In fact, since SVD of $\bs{A}'$
is merely
$$ \bs{A}’ = \bs{V}_r\boldsymbol{\Sigma}_r\bs{U}_r’, $$
the conclusion follows right away from the previous one.Q.E.D.
Null Space $N(\bs{A})$
Claim: $\bar{\bs{V}}_r$
forms a basis of $N(\bs{A})$
.
Proof. Solving $\boldsymbol{\Sigma}$
from the regular SVD gives
$$ \boldsymbol{\Sigma} = \bs{U}’\bs{A}\bs{V} = \begin{bmatrix} \bs{U}_r’\bs{A}\bs{V}_r & \bs{U}_r’\bs{A}\bar{\bs{V}}_r\newline \bar{\bs{U}}_r’\bs{A}\bs{V}_r & \bar{\bs{U}}_r’\bs{A}\bar{\bs{V}}_r \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}_r & \bs{O}\newline \bs{O} & \bs{O} \end{bmatrix} $$
and thus
$$ \begin{bmatrix} \bs{U}_r’\bs{A}\bar{\bs{V}}_r\newline \bar{\bs{U}}_r’\bs{A}\bar{\bs{V}}_r \end{bmatrix} = \begin{bmatrix} \bs{O} \newline \bs{O} \end{bmatrix} \Rightarrow \bs{A}\bar{\bs{V}}_r = \bs{O} $$
which means $\bar{\bs{V}}_r\in N(\bs{A})$
. Meanwhile, since $\bar{\bs{V}}_r$
is orthonormal with $\rank(\bar{\bs{V}}_r) = n-r = \dim(N(\bs{A}))$
, we conclude that $\bar{\bs{V}}_r$
forms a basis of $N(\bs{A})$
.Q.E.D.
Left Null Space $N(\bs{A}')$
Claim: $\bar{\bs{U}}_r$
gives a basis of $N(\bs{A}')$
.
Proof. Similar to the null space of $N(\bs{A})$
, if we consider $\bs{A}'$
in the place of $\bs{A}$
, then we have right away that
$$ \bs{A}’\bar{\bs{U}}_r = \bs{O} \Rightarrow \bar{\bs{U}}_r\in N(\bs{A}’) $$
and because $\rank(\bar{\bs{U}}_r)=m-r=\dim(N(\bs{A}'))$
, we conclude that $\bar{\bs{U}}_r$
forms a basis for the left null space of $\bs{A}$
.Q.E.D.